

Measuring the effect of hyaluronic acid on tendon healing after arthroscopic rotator cuff repair: A prospective randomized clinical trial

Ilian Dominiq D. EUSEBIO, MD, FPOA¹

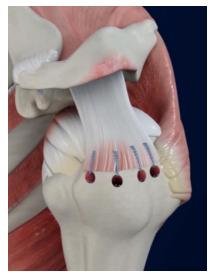
Lauro Kordel Saad T. GONZALES, MD, FPOA²

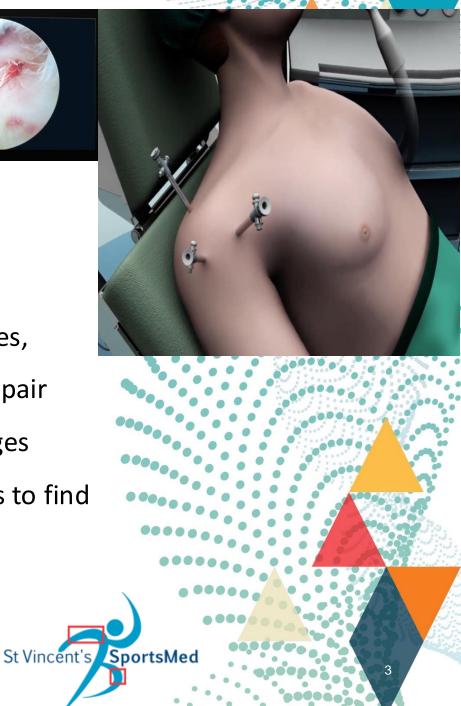
Juan Gabriel L. DE LEON, MD, FPOA³

A/Prof. Simon David TAN, MBBS (Hons), BSc (Med), FRACS, FA(Orth)A4

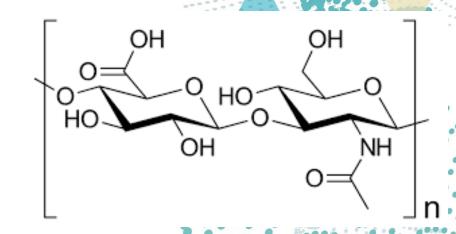
Warren Philip KUO, MBBS (Hons), BSc (Med), FRACS, FA(Orth)A⁵

Faculty Disclosure Information


No financial disclosures


Rotator cuff repair (RCR)

Arthroscopic RCR is widely accepted as a reliable treatment for patients with cuff injuries, with favourable outcomes in terms of pain relief and range of motion afforded^{1,2}


Despite modern improvements in techniques, implants, and rehabilitation, incidence of repair failure and post-operative stiffness still ranges between 20% and 95% - hence the impetus to find further ways to improve cuff healing^{3,4}

Hyaluronic acid (HA) and RCR

HA is a *high*—*molecular weight glycosaminoglycan* of repeating disaccharide units of glucuronic acid and N-acetyl-glucosamine; naturally present in synovial fluid, it exhibits viscoelastic properties that may facilitate normal joint fluid mechanics, and is reported to be highly safe when given as an injection ⁵⁻⁷

Multiple studies in animals and humans point to trends on the *positive effects of HA following RCR* in terms of <u>ultimate</u> <u>load-to-failure</u>, <u>collagen maturation</u>, <u>mesenchymal stem</u> <u>cell count</u>, and <u>re-tear incidence reduction</u> when compared to placebo⁸⁻¹⁰

Objectives

Determine if hyaluronic acid supplementation will improve outcomes of arthroscopic repair of complete rotator cuff tears compared to placebo, in terms of the following parameters:

- 1. Post-operative pain (VAS)
- 2. Clinical outcome scores (ASES, Constant)
- 3. Range of motion (ROM) recovery
- 4. Re-tear or repair failure (Sugaya)

Methodology

Double-blind prospective RCT

Patient selection at clinics Patient inventory [VAS, ROM, ASES, Constant scores] obtained

N=90
Arthroscopic RCR
surgery
On-Q catheter
inserted

n=45
Given 4 ml saline injection
at recovery room

3 mos: Patient inventory

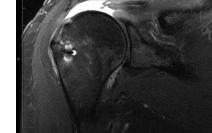
2 weeks:

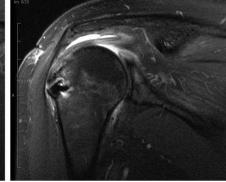
VAS check

6 mos: Patient inventory

12 mos:
Post-op MRI
Sugaya scores
Patient inventory

Exclusion criteria


<18y/o, >75 y/o
Advanced shoulder arthritis
Rheumatoid/inflammatory
arthritis


Primary shoulder instability
Revision cuff surgery
Irreparable tears
Smokers
Chronic pain syndromes
HA allergy

Given 4 ml HA (MONOVISCTM) injection at recovery room

n=45

Results: Patient characteristics

		HA (n=45)	Placebo (n=45)	Total (N=90)	P (<0.05)
Age		60.11 ± 9.95	61.42 ± 9.08	60.44 ± 9.90	0.75
Sex	Male Female	26 19	28 17	54 36	0.66
Handedness	Right Left	39 6	41 4	80 10	0.50
Operative side	Right Left	29 16	24 21	53 37	0.28
Tear width (cm)		1.70 ± 0.74	1.85 ± 1.07	1.85 ± 0.93	0.12
Repair type	Single-row Double-row	40 5	35 10	75 15	0.16
Subscapularis tear	Yes No	3 42	7 38	10 80	0.18
Biceps procedure	Tenodesis Tenotomy None	24 13 8	27 14 4	51 27 12	0.46
VAS (initial)		6.16 ± 1.94	5.49 ± 2.41	5.82 ± 2.21	0.15
ASES (initial)		43.20 ± 17.33	49.97 ± 19.36	46.59 ± 18.58	0.08
CONSTANT (initial)		59.09 ± 18.97	63.98 ± 17.17	61.53 ± 18.16	0.20
Strength (lbs)		32.62 ± 23.38	37.96 ± 23.63	35.29 ± 23.53	0.29

No significant differences between treatment arms

Intent-to-treat analysis performed

Dropout rate at 12 mos.: **17.8**%

	Pre-op	2 weeks	3 mos	6 mos	12 mos
N	90	90	85	73	74

Results: outcome measures

No significant differences (p<0.05) between HA and placebo, at any time point:

- VAS
- ASES
- Constant score
- Manual strength
- ROM all planes

		All ROM Plai	nes [FULL]	
35				
30				
25				
20				
15				
10				
5				
0				
	0	3	6	12
		Time	(mos.)	

		0	3 mos (%)	6 mos (%)	12 mos (%)
n	НА	45	43	36	39
	Saline	45	42	37	35
ALL	НА	0 (0)	8 (18.6)	24 (66.67)	33 (84.62)
	Saline	1 (2.22)	8 (19.05)	18 (48.65)	27 (77.14)

HA>placebo: no. of patients with full ROM at all planes at **6** and **12 mos**

Lubricating properties and increased rate of healing may modulate faster and safer progression of rehab for patients given HA after cuff surgery 9-11

Results: Re-tear incidence

Sugaya MRI Score	HA (%)	Placebo (%)
<u>Intact</u>	29 (85.3)	22 (73.3)
1	6 (17.6)	5 (16.7)
2	13 (38.2)	10 (33.3)
3	10 (29.4)	7 (23.3)
<u>Torn</u>	5 (14.7)	8 (26.7)
4	5 (14.7)	4 (13.3)
5	0	4 (13.3)
T + 1/N - C 4)	2.4	20
Total (N=64)	34	30

Relative risk ratio (RRR): **44.5% re-tear risk lower in HA** vs. placebo

Absolute risk ratio (ARR): **12%** reduction in re-tear rates with HA

No. needed to treat (NNT): **8.33** patients to prevent one cuff re-tear

Sugaya scores suggest that HA may have aided in tendon healing; re-tear risk is higher in patients with T2DM, high BMI, and larger sized tears¹²

Conclusions

HA administration in the immediate post-operative period showed potential improvements in arthroscopic RCR through

- allowing earlier improvement in functional range of motion
- decreasing re-tear risk rate

Clinical outcome scores were not significantly different for HA vs. placebo for up to 12 months

References

- 1. Lindley K, Jones GL. Outcomes of arthroscopic versus open rotator cuff repair: a systematic review of the literature. Am J Orthop (Belle Mead NJ). 2010;39(12):592-6
- 2. Wylie JD, Baran S, Granger EK, Tashjian RZ. A Comprehensive Evaluation of Factors Affecting Healing, Range of Motion, Strength, and Patient-Reported Outcomes After Arthroscopic Rotator Cuff Repair. Orthop J Sports Med. 2018 Jan 16;6(1):2325967117750104.
- 3. Novoa-Boldo, A., & Gulotta, L. V. (2018). Expectations Following Rotator Cuff Surgery. Current reviews in musculoskeletal medicine, 11(1), 162–166
- 4. Chalmers PN, Granger E, Nelson R, Yoo M, Tashjian RZ. Factors Affecting Cost, Outcomes, and Tendon Healing After Arthroscopic Rotator Cuff Repair. Arthroscopy. 2018 Jan 20.
- 5. Strauss EJ, Hart JA, Miller MD, Altman RD, Rosen JE. Hyaluronic acid viscosupplementation and osteoarthritis: current uses and future directions. Am J Sports Med. 2009;37:1636-1644
- 6. Post-Approval Study of MONOVISC, A Symptomatic Treatment of Osteoarthritis, White Paper, 2012.
- 7.MONOVISC 0702 Pivotal Clinical Trial. FDA Monovisc Summary of Safety and Effectiveness Data 2014.
- 8.Honda H, Gotoh M, Kanazawa T, et al. Hyaluronic Acid Accelerates Tendon-to-Bone Healing After Rotator Cuff Repair. The American Journal of Sports Medicine. 2017;45(14):3322-3330. doi:10.1177/0363546517720199
- 9. Chung Hee Oh et al. Effectiveness of Subacromial Anti-Adhesive Agent Injection after Arthroscopic Rotator Cuff Repair: Prospective Randomized Comparison Study. Clinics in Orthop Surg. 2011 Mar; 3(1): 55–61.
- 10.Jeong JY, Chung PK, Yoo JC. Effect of sodium hyaluronate/carboxymethyl cellulose (Guardix-sol) on retear rate and postoperative stiffness in arthroscopic rotator cuff repair patients: A prospective cohort study. Journal of Orthopedic Surgery 2017: 25(2); 1-8.
- 11. Nakamura, Y., Gotoh, M., Mitsui, Y., Nakamura, H., Ohzono, H., Okawa, T., & Shiba, N. (2020). Preoperative hyaluronic acid injection modulates postoperative functional outcome in patients undergoing arthroscopic rotator cuff repair. *Journal of orthopaedic surgery and research*, 15(1), 204
- 12. Zhao J, Luo M, Pan J, Liang G, Feng W, Zeng L, Yang W, Liu J. Risk factors affecting rotator cuff retear after arthroscopic repair: a meta-analysis and systematic review. J Shoulder Elbow Surg. 2021 Nov;30(11):2660-2670. doi: 10.1016/j.jse.2021.05.010. Epub 2021 Jun 2. PMID: 34089878.

